Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.
Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.
В состав замкнутой трубопроводной системы могут входить:
- Трубы.
- Соединительные элементы труб.
- Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.
Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.
Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.
Условный проход DN
Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.
Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.
Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1).
Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.
Рис. 1.1 Условный диаметр
Общепринятые номинальные диаметры:
3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.
Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.
Номинальное давление PN
Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.
Номинальное давление является безразмерной величиной.
Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).
Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения.
При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления.
Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).
Допустимое избыточное рабочее давление pe,zul
Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).
Рис. 1.2 График допустимых избыточных давлений
При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.
Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.
В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.
Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.
Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.
Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.
Фасонные части трубопровода
Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д..
Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3).
Эти фитинги могут быть частью любого трубопровода.
Рис. 1.3 Фасонные элементы трубопровода
Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.
Соединения выбираются (рис. 1.4) в зависимости от:
- материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
- условий работы: низкого или высокого давления, а также низкой или высокой температуры.
- производственных требований, которые предъявляются к трубопроводной системе.
- наличия разъемных или неразъемных соединений в трубопроводной системе.
Рис. 1.4 Типы соединения труб
Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры.
Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.
В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.
Тепловое линейное расширение
При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).
В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.
Элементы компенсации расширения труб
Отводы труб
Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).
Рис. 1.6 Компенсирующие трубные отводы
Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.
Волнистые трубные компенсаторы
Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).
Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.
Рис. 1.7 Волнистый трубный компенсатор
Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо.
Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка.
Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.
Изоляция труб
В том случае, если по трубопроводу перемещается среда с высокой температурой, необходима его изоляция во избежание потери тепла. В случае перемещения по трубопроводу среды с низкой температурой изоляцию применяют для предотвращения ее нагрева внешней средой. Изоляция в таких случаях осуществляется с помощью специальных изоляционных материалов, которые размещаются вокруг труб.
В качестве таких материалов, как правило, используются:
- При низких температурах до 100°C используются жесткие пенопласты, например, полистирол или полиуретан.
- При средних температурах около 600°C используются фасонные оболочки или минеральное волокно, например, каменная шерсть или стеклянный войлок.
- При высоких температурах в районе 1200°C – керамическое волокно, например, глиноземное.
Трубы, условный проход которых ниже DN 80, а толщина слоя изоляции меньше 50 мм, как правило, изолируются при помощи изоляционных фасонных элементов. Для этого две оболочки кладутся вокруг трубы и скрепляются металлической лентой, а после этого закрываются жестяным кожухом (рис. 1.8).
Рис. 1.8 Теплоизоляция при помощи фасонных элементов
Трубопроводы, которые имеют условный проход больше DN 80, должны снабжаться теплоизоляцией с нижним каркасом (рис. 1.9). Такой каркас состоит из зажимных колец, распорок, а также металлической облицовки, изготовленной из оцинкованной мягкой стали или нержавеющей листовой стали. Между трубопроводом и металлическим кожухом пространство заполняется изоляционным материалом.
Рис. 1.9 Теплоизоляция с нижним каркасом
Толщина изоляции рассчитывается путем определения затрат на его изготовление, а также убытков, которые возникают из-за потери тепла, и составляет от 50 до 250 мм.
Теплоизоляция должна наноситься по всей длине трубопроводной системы, включая зоны отводов и колен. Очень важно следить, чтобы не возникали незащищенные места, которые смогут стать причиной тепловых потерь.
Фланцевые соединения и арматура должны снабжаться фасонными изоляционными элементами (рис. 1.10).
Это обеспечивает беспрепятственный доступ к месту соединения без необходимости снимать изоляционный материал со всей трубопроводной системы в том случае, если произошло нарушение герметичности.
Рис. 1.10 Теплоизоляция фланцевого соединения
В том случае, если изоляция трубопроводной системы выбрана правильно, решается множество задач, таких как:
- Избегание сильного падения температуры в протекающей среде и, как следствие, экономия энергии.
- Предотвращение падения температуры в газопроводных системах ниже точки росы. Таким образом, удается исключить образование конденсата, который может привести к значительным коррозионным разрушениям.
- Избегание выделения конденсата в паровых трубопроводах.
Расход воды через трубу при нужном давлении
Основная задача расчёта объёма потребления воды в трубе по её сечению (диаметру) – это подобрать трубы так, чтобы водорасход не был слишком большой, а напор оставался хороший. При этом необходимо учесть:
- диаметры (ДУ внутреннего сечения),
- потери напора на рассчитываемом участке,
- скорость гидропотока,
- максимальное давление,
- влияние поворотов и затворов в системе,
- материал (характеристики стенок трубопровода) и длину и т.д..
Подбор диаметра трубы по расходу воды с помощью таблицы считается более простым, но менее точным способом, чем измерение и расчёт по давлению, скорости воды и прочим параметрам в трубопроводе, сделанный по месту.
Табличные стандартные данные и средние показатели по основным параметрам
Для определения расчётного максимального расхода воды через трубу приводится таблица для 9 самых распространённых диаметров при различных показателях давления.
Среднее значение давления в большинстве стояках находится в интервале 1,5-2,5 атмосфер.
Существующая зависимость от количества этажей (особенно заметная в высотных домах) регулируется путём разделения системы водообеспечения на несколько сегментов. Водонагнетение с помощью насосов влияет и на изменение скорости гидропотока.
Кроме того, при обращении к таблицам в расчёте водопотребления учитывают не только число кранов, но и количество водонагревателей, ванн и др. источников.
Изменение характеристик проходимости крана с помощью регуляторов водорасхода, экономителей, аналогичных WaterSave (https://water-save.com/), в таблицах не фиксируются и при расчёте расхода воды на (по) трубе, как правило, не учитываются.
Способы вычисления зависимостей водорасхода и диаметра трубопровода
С помощью нижеприведённых формул можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода воды.
В данной формуле водорасхода:
- под q принимается расход в л/с,
- V – определяет скорость гидропотока в м/с,
- d – внутреннее сечение (диаметр в см).
Зная водорасход и d сечения, можно, применив обратные вычисления, установить скорость, или, зная расход и скорость – определить диаметр. В случае наличия дополнительного нагнетателя (например, в высотных зданиях), создаваемое им давление и скорость гидропотока указываются в паспорте прибора. Без дополнительного нагнетания скорость потока чаще всего варьируется в интервале 0,8-1,5 м/сек.
Для более точных вычислений принимают во внимание потери напора, используя формулу Дарси:
Для вычисления необходимо дополнительно установить:
- длину трубопровода (L),
- коэффициент потерь, который зависит от шероховатостей стенок трубопровода, турбулентности, кривизны и участков с запорной арматурой (λ),
- вязкость жидкости (ρ).
Зависимость между значением D трубопровода, скоростью гидропотока (V) и водорасходом (q) с учётом угла уклона (i) можно выразить в таблице, где две известные величины соединяются прямой линией, а значение искомой величины будет видно на пересечении шкалы и прямой.
Для технического обоснования также строят графики зависимости эксплуатационных и капитальных затрат с определением оптимального значения D, которое устанавливается в точке пересечения кривых эксплуатационных и капитальных затрат.
Расчёт расхода воды через трубу с учётом падения давления можно проводить с помощью онлайн-калькуляторов (например: https://allcalc.ru/node/498; https://calc.ru/gidravlicheskiy-raschet-truboprovoda.html). Для гидравлического расчёта, как и в формуле, нужно учесть коэффициент потерь, что предполагает выбор:
- способа расчёта сопротивления,
- материала и вида трубопроводных систем (сталь, чугун, асбоценмент, железобетон, пластмасса), где принимается во внимание, что, например, пластиковые поверхности менее шероховатые, чем стальные, и не подвергаются коррозии,
- внутреннего диаметры,
- длины участка,
- падения напора на каждый метр трубопровода.
В некоторых калькуляторах учитываются дополнительные характеристики трубопроводных систем, например:
- новые или не новые с битумным покрытием или без внутреннего защитного покрытия,
- с внешним пластиковым или полимерцементным покрытием,
- с внешним цементно-песчаным покрытием, нанесённым разными методами и др.
Читайте далее
Оставьте комментарий и вступите в дискуссию
Онлайн-калькулятор потерь напора в зависимости от расхода жидкости и сечения трубопровода
Зачем нужен этот калькулятор?
Калькулятор умеет рассчитывать потери напора в метрах в зависимости от длины и диаметра вашего трубопровода, а также объемного расхода жидкости. Зная потери напора, вы сможете более точно подобрать нужный насос под вашу задачу.
Наш калькулятор использует формулу расчета одного немецкого института гидродинамики. Из всех протестированных нами формул эта в наибольшей степени соотносится с нашим собственным опытом.
Чтобы воспользоваться калькулятором, введите исходные данные, потом нажмите кнопку «Рассчитать». Ниже этой кнопки будут показаны результаты расчета.
Подробнее о заполнении полей калькулятора
Поясним чуть подробнее как заполнить исходные данные.
- Внутренний диаметр трубопровода Измеряется в миллиметрах. Лучше измерять диаметр труб непосредственно штангенциркулем, а не ориентироваться на справочные данные. Также обратите внимание на то, что диаметр требуется именно внутренний. В каталогах труб часто указывают номинальный диаметр труб, который чуть больше, чем внутренний.
- Длина трубопровода Измеряется в метрах. Длина трубопровода — это сумма длин всех прямых участков трубы, а не расстояние между начальной и конечной точкой. К примеру, если у вас труба идет 10 метров по земле, а затем поднимается на 3 метра вверх, и идет 2 метра в обратном направлении, то в калькулятор нужно занести число 15. Это важно учитывать на предприятиях, где трубы часто обходят препятствия и имеют технологические изгибы.
- Расход жидкости В этом пункте вы самостоятельно можете выбрать единицы измерения: литры в минуту или кубометры в час. Расход жидкости — это количество жидкости, которое протекает через трубу за определенное время. Например, если 60 литровая бочка наполняется водой за 1 час, значит расход воды составляет 60 литров в час или 1 литр в минуту.
- Перекачиваемая жидкость Для удобства в калькулятор уже занесены данные по кинематической вязкости некоторых жидкостей при температуре 20 °C. Если ваша жидкость присутствует в перечне, то просто выберите ее из выпадающего списка. Данные кинематической вязкости в поле ниже заполнятся автоматически. Если вашей жидкости в списке нет, то выберите пункт «Другая жидкость», после чего у вас появится возможность редактировать поле «Кинематическая вязкость» вручную. Кроме того, если температура перекачиваемой жидкости меньше 15 °С или больше 25 °С, то значение кинематической вязкости тоже лучше ввести вручную.
- Кинематическая вязкость Измеряется в квадратных метрах в секунду. В большинстве случаев это поле заполняется автоматически. Однако если у вас есть данные по вязкости, лучше укажите это значение вручную. Для этого нужно выбрать в поле выше пункт «Другая жидкость», после чего откроется возможность ручного редактирования кинематической вязкости. Данные о кинематической вязкости можно взять из специализированных таблиц или измерить непосредственно при помощи вискозиметра. Обратите внимание, что вязкость сильно зависит от температуры жидкости — измеряйте ее при той же температуре, при которой она будет находиться в трубах. В данном калькуляторе используется система СИ, поэтому вводите данные именно в квадратных метрах в секунду. В таблицах данные часто указывают в сантистоксах: 1 сСт = 0.000001 м²/с. Не запутайтесь в количестве нулей!
- Материал внутренней поверхности трубопровода Калькулятор содержит справочник материалов, из которых надо выбрать материал внутренней стенки трубопровода. Это нужно для определения шероховатости внутренней поверхности трубы. Если вы знаете шероховатость, то лучше указать ее вручную, выбрав пункт списка «Указать шероховатость вручную». После чего вам станет доступно для редактирования поле «Шероховатость внутренней поверхности».
- Шероховатость внутренней поверхности Измеряется в условных миллиметрах. Эти данные можно взять из специализированных справочников.
Результаты расчёта
После того, как вы заполните данные, нажмите кнопку «Рассчитать». Калькулятор отобразит следующие показатели:
- Площадь поперечного сечения трубопровода Рассчитывается в квадратных метрах. Этот показатель полезен для дальнейших расчетов.
- Относительная шероховатость трубопровода Измеряется в условных миллиметрах. Этот показатель может отличаться от номинальной шероховатости, но может и совпадать с ней. Он пригодится для ручных расчетов.
- Скорость течения жидкости Измеряется в метрах в секунду. Это средняя скорость каждой частицы жидкости вдоль оси трубопровода. Скорость у стенок трубопровода может отличаться.
- Число Рейнольдса Указывает на точность проводимых измерений и на вид течения жидкости. Чем меньше это число, тем точнее измерения. Но погрешность нарастает медленно, поэтому вплоть до сотен тысяч расчеты можно считать точными.
- Режим течения Важный показатель. Выделяют три режима: ламинарный — расчеты в этом режиме достаточно точные, а потери на трение не велики. Всегда стремитесь к тому, чтобы ваша жидкость текла в ламинарном режиме. Турбулентный режим — в этом случае точность расчетов еще на достаточном уровне, но в турбулентном режиме значительная часть энергии потока жидкости будет тратиться внутреннее трение, турбулентность и нагрев. Эксплуатировать трубы в таком режиме можно, но КПД системы будет на несколько процентов ниже, чем в ламинарном режиме. Переходный же режим характеризуется тем, что в перекачиваемой жидкости периодически возникают и угасают турбулентные колебания. Гарантировать точность расчетов в таком режиме нельзя. Если ваша система уже работает в переходном режиме, то выбирайте насос с большим запасом по мощности. Если же вы только проектируете систему, то избегайте переходного режима — измените диаметр труб либо на больший, либо на меньший.
- Коэффициент гидравлического трения Безразмерный показатель, используемый при расчете гидравлических систем.
- Потери напора по длине Это ключевой показатель, для расчета которого калькулятор и создавался. Потери измеряются в метрах водяного столба. Показатель напора отвечает на вопрос: насколько метров жидкость может подняться вверх. Он нужен для правильного подбора насоса.
Обратите внимание:
1. Любой калькулятор потерь напора (в том числе и этот) дает погрешности при вычислениях. Поэтому сделанный расчет должен быть подкреплен практической проверкой. Если вы нашли очевидную ошибку или неточность в расчетах нашего калькулятора, пожалуйста, сообщите нам на электронную почту.
2. Калькулятор рассчитывает потери давления жидкости без учета изменения высоты труб. Подробнее об этом будет указано в конце статьи.
Пример расчета потери напора для подбора насоса
Допустим, мы хотим подобрать насос для двухэтажного дома. Нам нужно, чтобы на втором этаже могла работать стиральная машина, для которой нужно обеспечить давление в 6 м.в.ст.
Источником воды будет колодец или скважина, глубиной 10 метров. Сам насос будет располагаться на уровне воды.
Начертим эскиз водопровода и укажем все известные нам размеры: расстояние от скважины до дома 15 метров, расстояние от земли до места установки стиральной машины 5 метров.
Сложив все эти величины, получаем длину трубопровода 30 метров. Вводим это значение в калькулятор. Заполняем остальные значения: в нашем случае внутренний диаметр труб будет 15 мм.
В качестве значения расхода воды укажем максимальное потребление для стиральной машины — 30 литров в минуту. В качестве жидкости у нас будет выступать вода, а в качестве труб — полипропилен.
Нажимаем кнопку рассчитать, и получаем потери напора в 22 метра водяного столба.
Но это еще не окончательный ответ. Из рисунка выше видно, что в нашем случае насос должен поднять воду на высоту 15 метров (10 метров высота скважины и 5 метров — высота дома). Значит к 22 м.в.ст. нужно добавить еще 15 метров высоты.
Общие потери напора, с учетом подъема воды из скважины до высоты второго этажа составят 22+15=37 метров водяного столба. Однако, если взять насос с максимальным напором в 37 м.в.ст. он сможет лишь поднять воду до уровня стиральной машины. Впускной клапан стиральной машины, по условиям нашей задачи, требует как минимум 6 м.в.ст.
избыточного давления. Их тоже нужно прибавить к результату: 37+6=43 метра водяного столба.
Вот теперь мы можем подобрать насос для данного водопровода: нам подойдут любые модели, способные обеспечить напор более 43 метров водяного столба.
Но, обратите внимание на получившуюся цифру: при длине линии в 30 метров у нас на одно только трение теряется аж 22 метра напора. Если трубы еще не проложены, то стоит выбрать диаметр труб побольше. Посмотрим, что будет, если мы всего на треть увеличим диаметр трубы. Диаметр у нас был 15, а теперь возьмем трубы диаметром 20 мм. Остальные данные оставим теми же.
Нажимаем кнопку «рассчитать» и получаем потери давления — чуть более 6 метров водяного столба. Значит мы сократили потери напора с 22 до 6 метров.
Прекрасный результат! Не забудем прибавить к этой цифре 15 метров подъема по высоте и 6 метров давления, которое мы хотим видеть на выходе из трубопровода: 6+15+6=27 метров водяного столба.
Получается, что увеличив диаметр труб всего на треть, мы можем существенно снизить требования к насосу. В нашем случае, для сечения труб ⌀ 20 мм нам подойдет любой насос с рабочим давлением более 27 метров водяного столба.
Расчет потери напора сделан. Как теперь подобрать насос?
Когда известны расчетные параметры трубопроводной сети, можно подобрать насос онлайн, пользуясь нашим каталогом. Для подбора насоса онлайн вам необходимо будет указать желаемую производительность насоса и его напор (давление). Подробнее об онлайн-подборе насосов на нашем сайте написано здесь.
Как вариант, вы всегда можете позвонить нам или написать на электронную почту, чтобы переложить подбор насоса на наших приветливых и заботливых менеджеров по продажам.
Расчет объема трубы: как рассчитать по формулам в литрах и в м3
При нахождении количества необходимой жидкости в отопительной системе часто нужно решить отдельную задачу – выполнить расчет объема трубы с заданными параметрами. Сама вычислительная формула проста. Однако на практике для получения точного результата применять ее нужно аккуратно.
Мы расскажем о том, как рассчитать внутренний объем важной коммуникационной системы. В представленной нами статье детально разобраны варианты проведения вычислений для трубопровода и приборов отопления. С учетом наших советов вы оперативно решите задачу.
Геометрические параметры труб
Для определения объема трубы необходимо и достаточно знать всего два ее показателя: длину и внутренний (фактический) диаметр. Последний параметр важно не перепутать с внешним размером, который приводят для правильного подбора фитингов и соединительных элементов.
Если значение толщины стенки неизвестно, то вместо расчетного внутреннего диаметра можно использовать DN (диаметр внутреннего прохода). Они приблизительно равны, а величина DN, как правило, указана на маркировке, которую размещают на внешней стороне изделия.
Стандартная номенклатура полипропиленовых труб содержит внешний диаметр и толщину стенки в миллиметрах.
По этим двум параметрам можно высчитать внутренний диаметр
Перед тем как попробовать рассчитать объем любой трубы, необходимо не допустить распространенную ошибку и привести все параметры к единой системе измерения.
Дело в том, что длину обычно выражают в метрах, а диаметр – в миллиметрах. Отношение этих двух единиц следующее: 1 м = 1000 мм.
На самом деле, можно привести параметры и к промежуточным значениям – сантиметрам или дециметрам. Иногда это даже удобно, учитывая, что в этом случае количество знаков после запятой или, наоборот, нулей, будет не очень большое.
Взаимосвязь единиц измерения объема. При переводе от одной величины к другой необходимо не допустить ошибку в количестве нулей или, наоборот, знаков после запятой
Для произведенных не в России (и не для России) труб диаметр может быть выражен в дюймах. В этом случае необходимо выполнить пересчет, учитывая, что 1″ = 25.4 мм.
Формула для отдельно взятой трубы
- С позиции геометрии, труба представляет собой прямой круговой цилиндр.
- Объем такого объекта равен площади сечения умноженной на длину:
- V = l * S
- В ней:
- V – объем (м3);
- l – длина (м);
- S – площадь сечения (м2).
- Площадь сечения трубы, имеющей форму круга с известным диаметром, вычисляют по формуле:
- S = π * d2 / 4
- Здесь:
- π = 3.1415926;
- d – диаметр круга (м).
- Итоговая формула объема трубы с известными внутренним диаметром и длиной будет иметь следующий вид:
- V = π * l * d2 / 4
- Если единицей измерения длины и диаметра трубы будет другая величина (дм, см или мм), то объем будет выражен в дм3, см3 или мм3 соответственно.
- Также, хотелось показать вам нехитрый способ измерения внешнего диаметра трубы (D) без штангенциркуля. D = L / π, где L – длина окружности:
Для правильного вычисления объема труб необходимо подставить в простую формулу два параметра: длину и внутренний диаметр. Насколько точно они будут измерены или рассчитаны, настолько точным будет полученный результат.
В производстве расчетов внутреннего объема трубы потребуются простые геометрические формулы, которыми в школе пользуются на уроках физики, алгебры, химии, геометрии и прочих предметах
Прикладные примеры проведения расчетов
Существенную помощь в разборе принципов вычислений и последовательности действий при выполнении расчетов окажут конкретные примеры, с которыми стоит ознакомиться заинтересованным посетителям.
Задача #1 – расчет объема требуемого теплоносителя
Для загородного дома временного проживания нужно рассчитать объем закупаемого пропиленгликоля – теплоносителя не застывающего при температурах до -30°C. Система отопления состоит из печи с рубашкой на 60 литров, четырех алюминиевых батарей по 8 секций каждая и 90 метров трубы PN25 (20 x 3.4).
Трубы стандарта PN25 20 х 3.4 наиболее часто применяют для организации небольшого отопительного контура с последовательным подключением радиаторов. Ее внутренний диаметр равен 13.2 мм
Объем жидкости в трубе нужно посчитать в литрах. Для этого в качестве единицы измерения надо взять дециметр. Формулы перехода от стандартных величин длины следующие: 1 м = 10 дм и 1 мм = 0.01 дм.
Объем рубашки котла известен. V1 = 60 л.
В паспорте алюминиевого радиатора Elegance EL 500 указано, что объем одной секции равен 0.36 л. Тогда V2 = 4 * 8 * 0.36 = 11.5 л.
Вычислим суммарный объем труб. Их внутренний диаметр d = 20 – 2 * 3.4 = 13.2 мм = 0.132 дм. Длина l = 90 м = 900 дм. Следовательно:
V3 = π * l * d2 / 4 = 3.1415926 * 900 * 0.132 * 0.132 / 4 = 12.3 дм3 = 12.3 л.
Таким образом, теперь можно найти общий объем:
V = V1 + V2 + V3 = 60 + 11.5 + 12.3 = 83.8 л.
Процентное отношение количества жидкости в трубах по отношению ко всей системе составляет всего 15%. Но если протяженность коммуникаций большая или используют система “водяной теплый пол”, то вклад труб в общий объем значительно увеличивается.
На промышленных и сельскохозяйственных объектах часто устанавливают самодельные радиаторы отопления, устроенные по типу регистров. Зная размеры труб, можно вычислить их объем
Задача #2 – расчет объема самодельного радиатора
Разберем, как рассчитать классический самодельный радиатор отопления из четырех горизонтальных труб длиной 2 м. Сначала необходимо найти площадь сечения. Измерить наружный диаметр можно с торца изделия.
Пусть он будет 114 мм. Используя таблицу стандартных параметров стальных труб, найдем толщину стенки, характерной для этого размера – 4.5 мм.
Вычислим внутренний диаметр:
d = 114 – 2 * 4.5 = 105 мм.
- Определим площадь сечения:
- S = π * d2 / 4 = 8659 мм2.
- Суммарная длина всех фрагментов равна 8 м (8000 мм). Найдем объем:
- V = l * S = 8000 * 8659 = 69272000 мм3.
Объем вертикальных соединительных трубок можно вычислить аналогичным образом. Но этой величиной можно и пренебречь, так как она будет составлять менее 0.1% от общего объема радиатора отопления.
Получившееся значение неинформативно, поэтому переведем его в литры. Так как 1 дм = 100 мм, то 1 дм3 = 100 * 100 * 100 = 1000000 = 106 мм3.
Поэтому V = 69272000 / 106 = 69.3 дм3 = 69.3 л.
Большие батареи или системы отопления (которые устанавливают, например, на фермах) требуют значительные объемы теплоносителя.
Поэтому так как нужно будет посчитать объем труб в м3, то и все габариты перед подстановкой их в формулу надо будет сразу переводить в метры.
Задача #3 – расчет необходимой длины ПП труб
Получить значение длины фрагмента можно с использованием обыкновенной линейки или рулетки. Незначительными изгибами и провисаниями полимерных труб можно пренебречь, так как они не приведут к серьезной итоговой ошибке.
При таком искривлении полимерных труб, их длина будет значительно больше (на 10-15%), чем протяженность участка, по которому они проложены
Для соблюдения точности гораздо важнее правильно определить начало и конец фрагмента:
- При присоединении трубы к стояку измерять длину нужно от начала горизонтального фрагмента. Не нужно захватывать примыкающую часть стояка, так как это приведет к двойному подсчету одного и того же объема.
- На входе в батарею измерять длину нужно до ее трубок захватывая краны. Они не учитываются при определении объема радиатора по его паспортным данным.
- На входе в котел измерять нужно от рубашки учитывая длину выходящих трубок.
Закругления можно измерять упрощенно – считать, что они проходят под прямым углом. Такой метод допустим, так как общий их вклад в длину труб незначителен.
При наличии схемы расположения теплого пола, рассчитать длину трубок с теплоносителем можно по плану с нанесением на него масштабной сетки
- Объем теплого пола считают по метражу установленных труб.
- Если данные по длине или схема отсутствуют, но известен шаг между трубками, то расчет можно провести по следующей приблизительной формуле (вне зависимости от способа укладки):
- l = (n – k) * (m – k)/k
- Здесь:
- n – длина участка теплого пола;
- m – ширина участка теплого пола;
- k – шаг между трубками;
- l – итоговая длина трубок.
Несмотря на малое сечение труб, которые применяют для водяного теплого пола, их общая протяженность приводит к значительному объему вмещаемого теплоносителя.
Так, для обеспечения системы, аналогичной на приведенном выше рисунке (длина – 160 м, внешний диаметр – 20 мм), необходимо будет 26 литров жидкости.
Получение результата экспериментальным методом
На практике возникают проблемные ситуации, когда гидравлическая система имеет сложную структуру или некоторые ее фрагменты проложены скрытным способом. В этом случае определить геометрию ее частей и рассчитать общий объем становится невозможно. Тогда единственным выходом становится проведение эксперимента.
Использование коллектора и укладка труб под стяжку – передовой способ скрытного подведения горячей воды к радиаторам отопления.
Точно рассчитать длину коммуникаций при отсутствии плана невозможно
Необходимо слить всю жидкость, взять какую-либо мерную емкость (например, ведро) и наполнить систему до нужного уровня.
Заливка происходит через самую верхнюю точку: расширительный бак открытого типа или верхний спусковой клапан. При этом все остальные клапаны должны быть открыты во избежание образования воздушных пробок.
Если движение воды по контуру осуществляет насос, то нужно дать ему час или два поработать без подогрева теплоносителя. Это поможет выгнать остаточные воздушные скопления. После этого нужно еще раз долить жидкость в контур.
Такой метод можно использовать и для отдельных частей отопительного контура, например, теплого пола. Для этого нужно его отсоединить от системы и таким же образом “пролить”.
Выводы
Несмотря на то, что в сети нам предложен огромный выбор программных продуктов для производства вычислений по литражу теплоносителя, есть гостовские таблицы для определения внутреннего объема труб, знать принципы «ручных» расчетов нужно.
Они необходимы тем, кто самостоятельно занимается сооружением и ремонтом коммуникаций, и тем, кто пользуется услугами проектных и строительных организаций. Полезные сведения помогут определиться с расходом материала перед устройством системы, точно подсчитать смету и получить представление о предстоящих эксплуатационных выплатах.
Хотите рассказать о том, как рассчитывали объем теплоносителя для автономной системы отопления на даче или в загородном доме? Располагаете информацией, которая может пригодиться посетителям сайта? Пишите, пожалуйста, комментарии, публикуйте фото по теме статьи, задавайте вопросы в расположенном ниже блоке.