Формула расчета скорости движения жидкости в трубе

Тема этой статьи – жидкость в трубе. Нам предстоит знакомство с физическими законами и формулами, описывающими ее движение, скорость и объем. Мы постараемся не лезть в дебри сложных расчетов: наша задача – описать те закономерности, которые будут понятны и доступны для вычисления человеку, далекому от гидродинамики.

Итак, приступим.

Формула расчета скорости движения жидкости в трубе

Нам предстоит знакомство с гидродинамикой, пусть и несколько поверхностное.

Размеры

Диаметр

В случае водопроводных и газовых труб мы имеем дело с не вполне обычной системой измерений. Для соответствующих трубопроводов в качестве основного параметра используется несколько непривычное понятие условного прохода, или условного диаметра (ДУ). Он измеряется как в дюймах, так и в миллиметрах; одна и та же ВГП труба может продаваться как 1 1/4 дюйма или ДУ32 мм.

Справка: в качестве меры длины в этом случае используется британский дюйм, равный 2,54 сантиметра. При пересчете дюймов в миллиметры следует учитывать предусмотренный ГОСТ шаг условных диаметров; так, в приведенном выше случае простой пересчет 1 1/4 дюйма в миллиметры даст не 32, а 1,25х2,54=31,75 мм.

Приведем предусмотренные ГОСТ 3262-75 размеры водогазопроводных труб.

Условный проход (ДУ), мм Фактический наружный диаметр, мм
15 21,3
20 26,8
25 33,5
32 42,3
40 48,0
50 60,0
65 75,5
80 88,5
90 101,3
100 114,0
125 140,0
150 165,0

Поскольку толщина стенок варьируется в пределах одного типоразмера (трубы производятся легкими, обыкновенными и усиленными), можно сказать, что ДУ в общем случае близок к внутреннему диаметру, но, как правило, не равен ему.

Формула расчета скорости движения жидкости в трубе

Условный проход близок к внутреннему диаметру трубы.

Сечение

При строительстве водопроводов используются, за редким исключением, трубы круглого сечения.

Тому есть две весьма веских причины.

  1. У круглой трубы минимальная площадь стенок при максимальной площади сечения. Стало быть, цена погонного метра трубопровода при фиксированной толщине стенки будет минимальной – просто из-за меньшего расхода материала.
  2. Круглое сечение обеспечивает максимальную прочность на разрыв. Дело в том, что сила, с которой внутренняя среда с избыточным давлением давит на стенки, прямо пропорциональна их площади; а площадь, как мы уже выяснили, минимальна именно у круглой трубы.

Формула расчета скорости движения жидкости в трубе

Магистрали высокого давления всегда имеют круглое сечение.

Площадь внутреннего сечения вычисляется по формуле S=Pi*R^2, где S – искомое значение площади, Pi – число “пи”, приблизительно равное 3,14159265, а R – радиус (половина внутреннего диаметра). Скажем, у трубы с внутренним диаметром 200 мм сечение будет равно 3,14159265х(0,1^2)=0,031 м2.

Поскольку течение жидкости в круглой трубе не всегда связано с заполнением всего ее объема, при расчетах нередко используется понятие “живого сечения”. Так называют площадь сечения потока. Скажем, при заполнении трубы ровно наполовину она будет равна (Pi*R^2)/2 (в приведенном выше примере – 0,031/2=0,00155 м2).

Формула расчета скорости движения жидкости в трубе

Живое сечение для напорной, самотечной канализации и для лотка.

Объем

Давайте выясним, чему равен объем жидкости в трубе. С точки зрения геометрии любая труба представляет собой цилиндр. Его объем рассчитывается как произведение площади сечения и длины.

Так, при площади сечения 0,031 м2 объем жидкости в полностью заполненном трубопроводе длиной 8 метров будет равен 0,031х8=0,248 м3.

При частично заполненной трубе для расчета используется среднее живое сечение. При постоянном уклоне и расходе движение жидкости по трубам будет равномерным; соответственно, живое сечение будет одинаковым на всех участках безнапорного трубопровода.

Расход

Разберемся, как выглядит расчет расхода жидкости через трубу. Задача имеет большую практическую ценность: она непосредственно связана с расчетами водопроводов при известном количестве сантехнических приборов.

Должны огорчить вас: простой и универсальной методики расчета не существует. Почему?

Просто потому, что при выполнении полного гидродинамического расчета своими  руками нужно учитывать огромный ряд факторов:

  • Коэффициент трения внутренней поверхности трубы. Очевидно, что шероховатая, покрытая отложениями сталь будет оказывать движению воды куда большее сопротивление, чем гладкий полипропилен.

Формула расчета скорости движения жидкости в трубе

Снимок позволяет оценить зарастание стальной трубы.

  • Длина трубопровода. Чем большее расстояние предстоит пройти жидкости, тем большим будет падение напора из-за торможения потока о стенки, тем сильнее уменьшится расход.
  • Диаметр трубопровода влияет на течение вязкой жидкости по трубам куда более сложным образом, чем это может показаться. Чем меньше сечение, тем большее сопротивление труба оказывает потоку. Причина – в том, что с уменьшением диаметра изменяется соотношение ее внутреннего объема и площади стенок.

Обратите внимание! В толстом трубопроводе ближняя к стенкам часть потока выполняет роль своеобразной смазки для его внутренней части. В тонком же толщина слоя этой смазки оказывается недостаточной.

  • Наконец, каждый поворот трубопровода, переход диаметра, каждый элемент запорной арматуры тоже влияет на расход жидкости в нем, тормозя поток.

Формула расчета скорости движения жидкости в трубе

Повороты и элементы запорной арматуры вызывают падение напора.

Нужно понимать, что все перечисленные факторы влияют на результат вовсе не на единицы процентов: скажем, для новой стальной трубы с полированной внутренней поверхностью и для заросшей отложениями (даже без учета падения просвета) гидродинамическое сопротивление отличается более чем в 200 раз.

Для профессионалов все необходимые для гидравлического расчета трубопровода с учетом его полной конфигурации, материала и возраста данные приводятся в таблицах Ф.А. Шевелева. На основе этих таблиц создано много онлайн-калькуляторов, позволяющих выполнить расчет с той или иной степенью достоверности.

Есть, однако, одна лазейка, позволяющая существенно упростить самостоятельные расчеты. При расходе жидкости через отверстие, пренебрежимо малое по сравнению с подводящей жидкость трубой (что, собственно, мы и наблюдаем при работе большинства сантехнических приборов), действует закон Торричелли.

Формула расчета скорости движения жидкости в трубе

Эванджелиста Торричелли, один из основоположников гидродинамики.

Согласно этому закону, в описанном случае действует формула V^2=2gH, где V – скорость потока в отверстии, g – ускорение свободного падения (9,78 м*с^2), а H – высота столба над отверстием или, что то же самое, напор перед ним.

Справка: 1 атмосфера (1 кгс/см2) соответствует напору водяного столба в 10 метров.

Как скорость потока в отверстии увязывается с расходом? В нашем случае инструкция по расчету проста: через отверстие с площадью сечения S пройдет объем жидкости, равный произведению S на скорость потока V.

Давайте в качестве примера рассчитаем расход воды через отверстие диаметром 2 сантиметра при напоре в 10 метров, соответствующем одной атмосфере избыточного давления.

  1. V^2=2 х 9,78*10 = 195,6
  2. V равно квадратному корню из 195,6. Результат (13,985706 м/с) для простоты расчетов округлим до 14 м/с.
  3. Площадь сечения отверстия с диаметром в два сантиметра согласно приведенной выше формуле равна 3,14159265*0,01^2=0,000314159265 м2.
  4. Расход, стало быть, будет равным 0,000314159265*14=0,00439822971 м3/с. Для удобства переведем его в литры: поскольку 1 кубометр равен 1000 литров, в сухом остатке будет результат в 4,4 литра в секунду.

Для полноты картины приведем некоторые справочные данные.

Сантехнический прибор Средний расход воды, л/с
Умывальник с водоразборным краном 0,1
Умывальник со смесителем 0,12
Мойка со смесителем 0,12
Ванна со смесителем 0,25
Биде со смесителем и аэратором 0,08
Сливной бачок унитаза 0,1
Посудомоечная машина (набор воды) 0,3
Автоматическая стиральная машина 0,25
Читайте также:  Правила эксплуатации и ремонта центробежных насосов

Формула расчета скорости движения жидкости в трубе

Заметьте: при последовательном подключении все задействованные приборы создают нагрузку на общую подводку.

Скорость потока

Как выглядит расчет скорости потока жидкости в трубе? В случае ее вытекания через отверстие небольшого диаметра действует приведенный выше закон Торричелли.

Однако в большинстве случаев скорость потока жидкости в трубе рассчитывается для трубопровода большой протяженности, гидравлическим сопротивлением которого нельзя пренебречь. Раз так – мы сталкиваемся с теми же проблемами: на скорость при постоянном перепаде на участке влияет слишком большое количество факторов.

Ситуация резко упрощается, если нам известен расход. Для несжимаемых жидкостей действует упрощенная формула уравнения непрерывности: Q=Av, где Q – расход воды в метрах в секунду,  А – площадь полного или живого сечения, v – средняя скорость жидкости в трубе круглого сечения или любой другой формы.

Зная приведенные выше справочные данные расхода воды сантехприборами, нетрудно рассчитать скорость движения потока в водопроводной трубе известного диаметра.

В качестве примера давайте выясним, с какой скоростью будет двигаться вода в подводке ХВС с внутренним диаметром 15 мм (0,015 м) при одновременном наполнении сливного бачка, использовании посудомоечной машины и умывальника.

Формула расчета скорости движения жидкости в трубе

На фото – подводки водоснабжения в квартире. 15 мм – наиболее часто применяемый диаметр.

  1. Суммарный расход воды приборами, согласно приведенной выше таблице, составит 0,1 + 0,3 + 0,12 = 0,52 л/с, или 0,00052 м3/с.
  2. Площадь сечения трубы равна 3,14159265 х 0,0075 м^2 = 0,000176714865625 м2.
  3. Скорость потока в метрах в секунду равна 0,00052 / 0,000176714865625 = 2,96.

Для справки приведем некоторые значения скорости движения воды в трубопроводах различного назначения.

Система Диапазон скоростей, м/с
Самотечная система отопления 0,2 – 0,5
Система отопления с принудительной циркуляций, розлив 0,5 – 3
Система отопления с принудительной циркуляцией, подводки к отопительным приборам 0,2 – 0,5
Магистрали водоснабжения 0,5 – 4
Подводки водоснабжения 0,5 – 1
Циркуляция в системе ГВС 0,2 – 0,5
Безнапорная канализация (в том числе, ливневая канализация) 0,35 – 1

Полезно: скорость потока до 1,5 м/с считается комфортной и не вызывающей ускорения абразивной эрозии стенок  трубопровода. Приемлемо временное повышение скорости до 2,5 м/с.

Диаметр и давление

Еще один любопытный аспект поведения жидкости в трубе – взаимосвязь между скоростью потока и статическим давлением в нем. Она описывается законом Бернулли: статическое давление обратно пропорционально скорости потока.

Формула расчета скорости движения жидкости в трубе

Наглядная демонстрация действия закона.

Практическое применение этого закона нашло воплощение во многих современных механизмах.

Приведем лишь пару примеров:

  • Пневматический краскопульт работает именно за счет создаваемого в струе воздуха разрежения, которое буквально высасывает краситель из бачка и превращает его в переносимый на окрашиваемую поверхность аэрозоль.
  • В элеваторном узле дома, подключенного к теплотрассе, разрежение в создаваемой соплом струе воды из подающего трубопровода вовлекает через подсос часть воды из обратки в повторный цикл циркуляции.

Схема работы элеватора.

Заключение

Надеемся, что читатель не нашел наш небольшой экскурс в основы физики, геометрии и гидродинамики слишком утомительным. Как обычно, дополнительную тематическую информацию можно обнаружить в видео в этой статье (см.также статью “Дымоходные трубы: монтаж и обслуживание”).

Успехов!

Диаметр трубопроводов, скорость течения и расход теплоносителя

Диаметр трубопроводов, скорость течения и расход теплоносителя.

В системе водяного отопления особенно часто у многих встает вопрос: Как вычислить диаметр трубопровода, по которому будет бежать теплоноситель (вода).

Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.

Для того чтобы вычислить диаметр необходимо знать:

1. Расход теплоносителя (воды) в трубе.
2. Сопротивление движению теплоносителя (воды) в трубе определенной длины.

Вот необходимые формулы, которые нужно знать:

Формула расчета скорости движения жидкости в трубе

S-Площадь сечения м2 внутреннего просвета трубы
π-3,14-константа — отношение длины окружности к ее диаметру.
r-Радиус окружности, равный половине диаметра, м
Q-расход воды м3/с
D-Внутренний диаметр трубы, м
V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя — является силой сопротивления.

Это сопротивление, называют — потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Извиняйте, но я привык указывать потерю напора в метрах. 10 метров водного столба создают 0,1 МПа.

  • Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.
  • Задача 1.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

1. Находим сечение
2. Находим расход
  1. Дано:
  2. S=3.14•0,0122/4=0,000113 м2
  3. Q=0,000113•1=0,000113 м3/с = 0,4 м3/ч.
  4. Ответ: 0,4 м3/ч.
  5. Задача 2.

Формула расчета скорости движения жидкости в трубе

Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.

Конечно, в реальности насосы не выдают постоянный расход и не выдают бесконечно большой напор. Поэтому по условию задачи мы условно приняли, что насос качает строго 40 литров в минуту, а напор насоса бесконечно большой.

Ниже я поясню все нюансы подбора диаметра.

  • Решение.
  • Дано:
  • Q=40л/мин=0,000666666 м3/с
  • Из выше указанных формул получил такую формулу.

Формула расчета скорости движения жидкости в трубе

Ответ: 12мм

К сожалению, по такой формуле находить диаметр трубы не разумно и вот почему!

Каждый насос имеет вот такую расходно-сопротивляемую характеристику:

Формула расчета скорости движения жидкости в трубе

Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.

Чем длиннее труба, тем больше потеря напора.
Чем меньше диаметр, тем больше потеря напора.
Чем выше скорость теплоносителя в трубе, тем больше потеря напора.
Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора.

Такой характеристикой обладают на самом деле не насосы, а жидкости, которые подчиняются гидравлическим законам. Эти законы распространяются не только на насосы, но и на все трубы по которым течет жидкость.

Даже если вода будет истекать из наполненного бака, там тоже будет присутствовать такая вот расходно-сопротивляемая характеристика.

  1. Более детально потеря напора по длине трубопровода рассматривается в этой статье:
  2. Потеря напора по длине трубопровода.

  3. А теперь рассмотрим задачу из реального примера.
  4. Хочу сразу Вас уведомить, что для следующей задачи были использованы эти материалы:
  5. Профессиональный расчет диаметра трубы для водоснабжения.
  6. Задача 2:

Формула расчета скорости движения жидкости в трубе

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м3/ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

Дано:

D=100 мм = 0,1м
L=376м
Геометрическая высота=17м
Отводов 21 шт
Напор насоса= 0,5 МПа (50 метров водного столба)
Максимальный расход=90м3/ч
Температура воды 16°С.
Труба стальная железная
Читайте также:  Принцип работы и технические характеристики насосов цнсг

Найти максимальный расход = ?

Решение на видео:

  • Купить программу
  • Для решения необходимо знать график насосов: Зависимость расхода от напора.

Я выбрал визуально похожий график всех насосов, от реального может отличаться на 10-20%. Для более точного расчета необходим график насоса, который указан в паспорте насоса.

Формула расчета скорости движения жидкости в трубе

В нашем случае будет такой график:

Формула расчета скорости движения жидкости в трубе

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м3/час. (90-Qmax=14 м3/ч).

  1. Не существует прямой формулы, которая дает прямой расчет нахождения расхода, а если и существует, то она имеет ступенчатый характер и некоторую логику, которая способна Вас запутать — окончательно.
  2. Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).
  3. Поэтому решаем задачу ступенчато.
  4. Поскольку мы имеем интервал расходов от 0 до 76 м3/час, то мне хочется проверить потерю напора при расходе равным: 45 м3/ч.
  5. Находим скорость движения воды
  • Q=45 м3/ч = 0,0125 м3/сек.
  • V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с
  • Находим число рейнольдса

Формула расчета скорости движения жидкости в трубе

ν=1,16•10-6=0,00000116. Взято из таблици. Для воды при температуре 16°С.

Re=(V•D)/ν=(1,59•0,1)/0,00000116=137069

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.

  1. Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.
  2. У меня попадает на вторую область при условии
  3. 10•D/Δэ < Re < 560•D/Δэ
  4. 10•0,1/0,0001 < Re < 560•0,1/0,0001
  5. 10 000 < Re < 560 000

Формула расчета скорости движения жидкости в трубе

  • λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/137069)0,25=0,0216
  • Далее завершаем формулой:
  • h=λ•(L•V2)/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.
  • Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:
  • Теперь делаем оригинальный расчет при расходе равный 64м3/час
  • Q=64 м3/ч = 0,018 м3/сек.
  • V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с
  • Re=(V•D)/ν=(2,29•0,1)/0,00000116=197414
  • λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/197414)0,25=0,021
  • h=λ•(L•V2)/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.
  • Отмечаем на графике:
  • Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Ответ: Максимальный расход равен 54 м3/ч. Но это мы решили без сопротивления на поворотах.

  1. Для проверки проверим:
  2. Q=54 м3/ч = 0,015 м3/сек.
  3. V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
  4. Re=(V•D)/ν=(1,91•0,1)/0,00000116=164655
  5. λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213
  6. h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.
  7. Итог: Мы попали на Нпот=14,89=15м.
  8. А теперь посчитаем сопротивление на поворотах:
  9. Формула по нахождению напора на местном гидравлическом сопротивление:
  10. Подробней об этом в разделе: Местные гидравлические сопротивления
h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.

  • Подробней об этом в разделе: Местные гидравлические сопротивления
  • Возьмем ζ = 1.
  • Скорость 1,91 м/с
  • h=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м.
  • Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.
  • Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.
  • Давайте теперь решим целиком задачку с отводами.

При расходе 45 м3/час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ•(V2)/2•9,81=(1•2,292)/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.

  1. Складываем потери напора: 10,46+5,67=16,13м.
  2. Отмечаем на графике:
  3. Решаем тоже самое только для расхода в 55 м3/ч
  4. Q=55 м3/ч = 0,015 м3/сек.
  5. V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
  6. Re=(V*D)/ν=(1,91 •0,1)/0,00000116=164655
  7. λ=0,11( Δэ/D + 68/Re )0.25=0,11•( 0,0001/0,1 + 68/164655)0,25=0,0213
  8. h=λ•(L•V2)/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.

h=ζ•(V2)/2•9,81=(1•1,912)/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.

  • Складываем потери: 14,89+3,78=18,67 м
  • Рисуем на графике:

Ответ: Максимальный расход=52 м3/час. Без отводов Qmax=54 м3/час.

  1. Чтобы в ручную не считать всю математику я приготовил специальную программу:
  2. Скачать калькулятор расчетов гидравлического сопротивления.

Теперь я думаю вам понятно как происходит сопротивление движению потока. Если не понятно, то я готов услышать ваши коментарии по данной статье. Пишите коментарии.

В итоге, на размер диаметра влияют:

1. Сопротивление, создаваемое трубой с поворотами
2. Необходимый расход
3. Влияние насоса его расходно-напорной характеристикой

Если расход в конце трубы меньше, то необходимо: Либо увеличить диаметр, либо увеличить мощность насоса. Увеличивать мощность насоса не экономично.

Вычисляем диаметр трубы для отопления

Данная статья является частью системы: Конструктор водяного отопления

Скорость воды в трубопроводе: факторы и расчеты

Сооружая автономную водопроводную сеть для частного дома, необходимо задуматься о достаточно большом количестве параметров, которые сделают водопровод сетью, работающей долгое время и не требующей больших затрат на ее обслуживание. Один из важных факторов – скорость движения воды в трубопроводах водоснабжения.

Почему скорость должна быть определенного значения

Формула расчета скорости движения жидкости в трубеСкорость воды в трубах учитывают при выборе материала и диаметра трубопровода

Если скорость недостаточная, на стенках труб будут осаждаться нерастворенные частицы, которые поступают с водой из скважины или колодца. Это приведет к заиливанию и уменьшению проходного сечения. В результате снизится напор и производительность всей системы в целом.

Если скорость воды в водопроводе большая, это приводит к увеличению давления перекачиваемой жидкости на стенки труб и их стыки. Велика вероятность, что в каком-то месте трубопровода со временем произойдет протечка.

Типовые значения скорости

Существуют рекомендованные значения скорости водяного потока в трубах водоснабжения, которые зависят от материала, из которого водопроводные трубы изготовлены, новые они или уже были в эксплуатации. Вот несколько зависимостей, которые помогут сделать правильный выбор.

Скорость в пластиковой трубе м/сек Скорость в стальной трубе, м/сек
новая старая
50 22 0,7 0,062
100 11 0,74 0,068
200 7,6 0,82 0,076

Скорость напрямую зависит и от диаметра труб. При этом любые жидкости, движущиеся по трубам, подчиняются законам физики. В водопроводе эти законы стремятся остановить движение воды. Сила, которая к этому прикладывается, называется силой сопротивления. Она ведет к потерям напора, а соответственно и к снижению скорости.

Обычно формулу скорости потока воды в трубопроводах, как таковую, не применяют нигде. Потому что нет смысла рассчитывать то, что уже доказано и находится в свободном доступе в таблицах. Ее принимают, как стандартную рекомендованную величину.

Сам параметр скорости потока воды в трубопроводах применяют для расчета нескольких характеристик водопроводной сети. К примеру, при расчете расхода воды или выбора диаметра труб.

Под водопроводом надо понимать сети питьевой воды, горячего водоснабжения и противопожарной системы.

Примеры расчетов

Формула расчета скорости движения жидкости в трубеЧаще с помощью скорости рассчитывают расход воды или диаметр труб. Для этого используют формулу:

Читайте также:  Муфта для металлопластиковых труб монтаж

W= V×S, где W – расход, V – скорость, S – площадь сечения выбранных труб.

По одной из таблиц выбирается скорость движения воды. Если это пожарный водопровод, в нем данный параметр должен быть в пределах 3 м/с. Достаточно большое значение, но для водопровода этого типа величина усредненная, бывает и больше.

К примеру, надо рассчитать сечение трубы. Для этого дополнительно нужно определиться, сколько воды будет расходоваться через спринклеры или дренчеры противопожарной системы. Это также табличная величина, зависящая от защищаемой площади здания или сооружения. Пусть это будет пожарная система в одну струю, в которой обычно расход составляет 3,5 л/сек или 0,0035 м³/час.

  • Зная все требуемые параметры водопровода, можно рассчитать сечение труб, которые будут монтироваться в сеть:
  • S=W/V=0,0035:3 = 0,0012 м².
  • Зная сечение трубы, можно подсчитать ее диаметр. Формула площади такова: S=πD²/4, отсюда формула диаметра:

D=√4S/π=√(4×0,0012:3,14)=0,0038 м или 38 мм. Такого значения диаметра труб не существует, поэтому надо выбрать стандартное большее — 40 мм.

Это самый простой пример. В реальности большинство водопроводных систем – это сложные схемы, в которых присутствуют отводы, подсоединяемые участки, установленная запорная арматура и прочие препятствия, которые снижают быстроту движения воды в водопроводе.

При этом во многих сетях установлены насосные станции, которые формируют производительность и напор.

Нередко в систему устанавливаются насколько насосных агрегатов, которые работают попеременно: по два, по три, по одному, в разных последовательностях включения и отключения.

В таких случаях расчет проводят ступенчато, для каждого участка по отдельности. При этом обязательно учитываются дополнительные коэффициенты, которые нивелируют полученные значения, а также потери напора на фитингах и в местах установки запорной арматуры.

Скорость потока

Формула расчета скорости движения жидкости в трубеСкорость воды в трубе имеет два значения: у стенок она равна нулю, у оси — максимальный параметр. Чем дальше от оси, тем слабее движется вода.

Если рассматривать цилиндр, по которому движется жидкость, как воображаемую модель, можно сказать, что на воду внутри трубы не будут действовать никакие силы. Но в реальности все не так. Первая сила, которая действует на водяной поток, — сила трения о внутренние стенки трубопровода. Она уменьшается с отдалением от стенок.

Вторая сила – нагнетающая, действующая от насоса в направлении движении потока. Если этот параметр всегда неизменный, течение жидкости внутри трубы происходит ламинарно. Скорость остается неизменной, у стенок она равна нулю. Это идеальная ситуация.

На практике так случается редко. Факторов для этого много, к примеру, включение и отключение насоса, засорение фильтра и так далее. В таком случае у стенок трубопроводов скорость изменяется резко: то больше, то меньше с иногда огромной разницей. В остальной части эта характеристика изменяется меньше.

Многие интернет-порталы предлагают калькуляторы, с помощью которых можно рассчитать скорость потока жидкости, проходящей через цилиндр. Для этого потребуется всего лишь два параметра:

  • внутренний диаметр трубы в мм;
  • производительность водопровода, а точнее, объем жидкости, проходящей через трубу за определенный промежуток времени (м³/час).

Но в таких калькуляторах не учитывается материал, из которого трубы изготовлены, а также наличие или отсутствие фитингов, дополнительных контуров и запорной арматуры. Эти расчетные сервисы можно взять за основу, но точного значения от них ждать не стоит.

Решая вопрос, связанный со скоростью перемещения водного потока внутри водопроводной сети, необходимо четко определиться со сложностью системы, производительностью насосных станций и видами используемых труб. Проще всего – подобрать это значение по таблице, в которой показатели давно рассчитаны и гарантированно достоверны.

Калькулятор скорости воды в трубе (газа, жидкости)

Предлагаем определить с помощью нашего калькулятора скорости воды в трубе или трубопроводе. Расчет может будет необходим в том случае, если Вы решили провести канализацию, отопительную или водопроводную систему своими руками в частном доме или квартире. Результат расчета поможет определиться в выборе диаметра трубы, его протяженности или количестве поворотов трубопровода.

Онлайн калькулятор скорости воды в трубе

Рассчитать все параметры перемещения жидкости в водопроводной системе, вопреки кажущейся простоте, представляет собой сложную задачу, поскольку на поток воды действует одновременно множество разноречивых факторов.

Зачем нужен расчет

Каковы основные направления использования воды в здании? Их несколько:

  1. Потребление для санитарных, а также бытовых нужд.
  2. Устройство отопления с водяным теплоносителем.
  3. Водопровод системы пожаротушения.
  4. Система канализации стоков.

Каждое направление имеет свои особенности и характеристики по условиям эксплуатации. При недостаточной мощности трубопроводной системы возможно критично резкое снижение давления, а вероятность получения слабой струйки из пожарного шланга испортит настроение любому.

Скорость течения стоков по системе канализации также имеет особое значение, поскольку малейший просчет в угле наклона отрицательно сказывается  на работе такого водопровода и его долговечности. Недостаточный угол предполагает возможность остановки действия, а излишний приводит к ускоренному засорению канала.

Влияние различных факторов на работу водопроводной сети

На первый взгляд механизм простой – есть магистраль с определенным диаметром и чем большего оно размера, тем больше пройдет по ней жидкости при определенном давлении.

Безусловно, это действенные факторы, влияющие на расход воды и интенсивность ее перемещения по водопроводной сети. Но это только начало длинного перечня, поскольку кроме них существуют и другие воздействия:

  1. Длина трубы. По мере перемещения жидкость испытывает обратное направлению потока воздействие от трения о стенки трубы. Величина сопротивления такова, что пренебречь ею невозможно. Разумеется, на консоли через сливное отверстие скорость истечения зависит только от давления. Но вытекшую жидкость нужно заместить, а быстрота ввиду сопротивления недостаточна.
  2. Прямое воздействие на скорость течения жидкости оказывает диаметр внутреннего сечения трубопровода. Чем он меньше, тем более сильное сопротивление потоку оказывается, поскольку площадь контакта по отношению к объему протекающей воды увеличивается. То есть, между этими параметрами существует обратно пропорциональная зависимость.
  3. Материал, из которого изготовлена круглая труба, также оказывает существенное влияние. Внутренняя поверхность пластиковых изделий, изготовленных из сшитого полиэтилена, более гладкая, чем у аналогичных из металла. Она оказывает гораздо меньшее сопротивление потоку. Более того, при расчете скорости жидкости в трубопроводе, изготовленном из металла, следует понимать, что он справедлив только для новой системы. Такие системы очень быстро засоряются известковыми отложениями на внутренних стенках и продуктами окисления металла. Учесть такие воздействия невозможно, поскольку интенсивность их накопления во многом зависит от качества воды. Величина сопротивления в новой трубе и засоренной может возрастать до 200 раз.
  4. Скорость движения жидкости в трубопроводной системе во многом зависит от ее сложность. Каждый поворот, каждый фитинг – это потеря скорости, причем степень влияния не ограничивается статистической погрешностью, а снижает проходимость многократно.

Учитывая сказанное, очевидно, что достоверно определить основные параметры действия водопровода гидравлическим расчетом практически невозможно. Тем не менее, расчет скорости воды в трубопроводе необходим для определения первичных данных по его основным характеристикам и делать его нужно с использованием калькулятора, используя  режим online.

Формула расчета скорости движения жидкости в трубе

Ссылка на основную публикацию
Adblock
detector